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N O N I S O T H E R M A L  F I L T R A T I O N  O F  A N  I D E A L  G A S  

E. A. Bondarev UDC 532.546 

Specific features of the statement of boundary-value problems of steady nonisothermal gas filtration are 

revealed. The solution for an axisymmetric influx to the hole is obtained in quadratures. The influence of 

nonisothermicity and the process parameters on the pressure distribution is investigated. 

Steady nonisothermal gas filtration is described by a system of equations comprised of the continuity and 

energy equations, the equation of state, and the Darcey law [1 1: 

div (pw) = 0; 

Lpor div grad T - -  cppw (gradT - -  e grad p) = 0; 

k 
w - -  gradp, p = p/zRT: 

F 

(1) 

For a plane-radial flow, the system (1) can be reduced to the form 

dr r dr - ~ r  r dr dr ] 

Here we have introduced the variables and parameters ~ = P / P o u t ,  T = T / T o u t ,  7 = r /rh,  v = cpM/27dMpor, which 

is an analog of the Peclet number, g = Poute/Tout, and/3 = r (here and in the sequel the bar is 

omitted). 

For a unique solution, system (2) requires specification of three boundary conditions. Because it contains 

the first derivative of pressure and the second derivative of temperature, it would seem necessary to impose one 

boundary condition for pressure (p = 1 at r = Re) and two boundary conditions for temperature. At the same time, 

it is evident from physical reasoning that the temperature at the bottom of the hole must not be preset arbitrarily 

during gas extraction (with gas injection to the stratum this difficulty is eliminated). A natural way out of this 

difficulty is the statement of the second boundary condition for pressure. 

For filtration of an ideal gas, system (2) admits an analytic solution. Indeed, at z = 1 and e = 0, it reduces 

to the form 

a__2_p _ 7" . ,  (3) 
dr rp 

d2T -t- 1 - -  v dT = 0 .  (4) 
dr 2 r dr 

We seek the solution to this system under the following boundary values 

p =  1, T = I  at r = R c ;  (5) 

P = P b  at r =  1. (6) 

The temperature distribution can be obtained from Eq. (4) up to the integration constant in the form 

T =  1 - -  Ct (RV__r v) (7) 
' v  
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Fig. 1. Distributions of the square of the pressure and the temperature in 
a x i s y m m e t r i c  f i l t ra t ion ;  num era l s  at the  curves  deno te  values  of the 
dimensionless parameter  v; solid lines denote the square of dimensionless 

Substituting Eq. (7) into Eq. (3) and integrating with allowance for conditions (5), we arrive at 

 c_rV, )]. 
(8) 

Now, using condition (6), we find the integration constant 

C1 In Rc - -  a 

v R v c ( v l n R c - 1 ) + l  ' 

where a = (1 -p2) /2 f l .  

Substituting Eq. (9) into Eq. (7), we obtain the temperature at the bottom of the hole 

(9) 

l n R c - - a  ( R c - -  I). (10) 
T b =  1 - - v  R v c ( v l n R c _  l) + 1  

It is evident from Eq. (10) that this temperature is substantially dependent  on all parameters  of the process. 

Moreover, these parameters  must not be prescribed arbitrarily. Using Eq. (10), we may demonstrate  that the 

fulfillment of the condition T b >__ 0 requires that the inequality av _> 1 be satisfied. Moreover, it follows from Eq. 

(10) that, with increasing parameter  v, the temperature at the extraction point will rise, tending to a limit: 

lim T b --= a/ln Re. (11) 

Equation (11) is of practical importance, since it allows a determination of the lower limit for gas cooling 

in filtration through a cylindrical wall based on the input parameters without completely solving the problem of the 

temperature and pressure distribution. 

The  pressure distribution in nonisothermal filtration also has its own specific features. In particular, it 

follows from solution (8) that the curve p2(r) has an inflection point only provided va > 1. The  position of this point 

can be determined from the equation 

, ( ,  ) 
v ~ 1 CxRc 1 . (12) 

The  foregoing is i l lustrated by graphs (Fig. 1) of the pressure distribution for various values of the 

parameter  v. The  calculations are performed for fl = 1, R c -- 1 l ,  and Pb = 0.3; here a = 0.455. The  temperature  at 

the point of gas extraction was 

8 5 0  



v 2.2 3.35 10 

Tb I 0.007 0.075 0.155 0.190 

The predictions comply with the physically obvious conclusion that the degree of cooling of an ideal gas increases with 

decreasing intensity of its extraction (the parameter v). Moreover, as this parameter increases, the following trend of 

temperature variation along the radial coordinate is observed: the gradient on a segment remote from the extraction 

point increases, after which the curve T(r) goes to a horizontal asymptote (see the dashed curves in Fig. 1). 

Bearing in mind that in the case of isothermal filtration 

p ~ =  1--261n,Rc 
r 

and comparing the latter expression with Eq. (8), we find that, for nonisothermal filtration, the pressure is higher 

than that for constant temperature everywhere, except boundary points. 

In conclusion we note that these specific features of formulating boundary-value problems of nonisothermal 

filtration should also be taken into account in the case where initial system (1) for an ideal gas is reduced to the 

Laplace equation for the function [2, 3 ] u = p2 + 2bT, where b = J.porR/~Tout/cpkpout. 

N O T A T I O N  

p, gas density; "~por, thermal conductivity of the gas-saturated porous medium; T, gas temperature; Cp, 

specific heat of the gas at constant pressure; E, choking coefficient; w, filtration rate; k, permeability of the porous 

medium; p, gas viscosity; z, gas imperfection coefficient; R, gas constant; r, radial coordinate; rh, hole radius; Ro 

coordinate of the outer boundary; M, mass flow rate of the gas; h, power (thickness) of the gas-saturated stratum. 

The subscript out corresponds to the outer boundary of the stratum. 
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